Categories

Jumat, 20 Januari 2012

PEMANFAATAN RADIOISOTOP DI BIDANG KEDOKTERAN

BAB I
PENDAHULUAN

Abad 20 ditandai dengan perkembangan yang menakjubkan di bidang ilmu dan teknologi, termasuk disiplin ilmu dan teknologi kedokteran serta kesehatan. Terobosan penting dalam bidang ilmu dan teknologi ini memberikan sumbangan yang sangat berharga dalam diagnosis dan terapi berbagai penyakit termasuk penyakit-penyakit yang menjadi lebih penting secara epidemologis sebagai konsekuensi logis dari pembangunan di segala bidang yang telah meningkatkan kondisi sosial ekonomi masyarakat.
Penggunaan isotop radioaktif dalam kedokteran telah dimulai pada tahun 1901 oleh Henri DANLOS yang menggunakan radium untuk pengobatan penyakit tubercolusis pada kulit. Namun yang dianggap Bapak Ilmu Kedokteran Nuklir adalah George C. de HEVESSY, dialah yang meletakkan dasar prinsip perunut dengan menggunakan radioisotop alam Pb-212. Dengan ditemukannya radioisotop buatan maka radioisotop alam tidak lagi digunakan.
Radioisotop buatan yang banyak dipakai pada masa awal perkembangan kedokteran nuklir adalah I-131. Akan tetapi pemakaiannya kini telah terdesak oleh Tc-99m selain karena sifatnya yang ideal dari segi proteksi radiasi dan pembentukan citra juga dapat diperoleh dengan mudah serta relatif murah harganya. Namun demikian I-131 masih sangat diperlukan untuk diagnostik dan terapi, khususnya kanker kelenjar tiroid.
Perkembangan ilmu kedokteran nuklir yang sangat pesat tersebut dimungkinkan berkat dukungan dari perkembangan teknologi instrumentasi untuk pembuatan citra terutama dengan digunakannya komputer untuk pengolahan data sehingga sistem instrumentasi yang dahulu hanya menggunakan detektor radiasi biasa dengan sistem elektronik yang sederhana, kini telah berkembang menjadi peralatan canggih kamera gamma dan kamera positron yang dapat menampilkan citra alat tubuh, baik dua dimensi maupun tiga dimensi serta statik maupun dinamik.
Dewasa ini, aplikasi teknik nuklir dalam bidang kesehatan telah memberikan sumbangan yang sangat berharga dalam menegakkan diagnosis maupun terapi berbagai jenis penyakit. Berbagai disiplin ilmu kedokteran seperti ilmu penyakit dalam, ilmu penyakit syaraf, ilmu penyakit jantung, dan sebagainya telah mengambil manfaat dari teknik nuklir ini.
Berdasarkan penjabaran di atas, maka penulis tertarik dengan masalah pemanfaatan Radioisotop dalam Bidang Kedokteran besrta aplikasi Nuklir dalam kedokteran. Oleh karena itu penulis mengambil suatu judul makalah yang sekiranya penting dan sangat jarang untuk dibahas yaitu : “Pemanfaatan Radioisotop Di Bidang Kedokteran”. Siapa yang hanya hidup untuk dirinya maka ia akan hidup sebagai manusia kerdil dan akan “mati” sebelum ia mati. Hiduplah untuk orang lain,niscaya kau jadi manusia besar dan tidak akan “mati” selamanya. (Ust. Syatory A R)
BAB II
RADIOISOTOP
A. DefinisiRadioisotop adalah isiotop dari zat radioaktif, dibuat dengan menggunakan reaksi inti dengan netron.
Misalnya 92 U 238 + 0 n 1 ® 29 U 239 + g
Penggunaan radioisotope, dapat diaplikasikan dalam berbagai bidang, yang nantinya dalam makalah ini akan dikhususkan di bidang Kedokteran. Beberapa bidang tersebut meliputi:
Ø Bidang hidrologi
Ø Bidang biologi
Ø Bidang industri
Ø Bidang Arkeologi
Ø Bidang Kedokteran
B. Produksi Radioisotop
Radioisotop yang sering digunakan dalam berbagai bidang kebutuhan manusia seperti bidang kesehatan, pertanian, hidrologi dan industri, pada umumnya tidak terdapat di alam, karena kebanyakan umur paronya relatif pendek. Radioisotop dibuat di dalam suatu reaktor nuklir yang mempunyai kerapatan (fluks) neutron tinggi dengan mereaksikan antara inti atom tertentu dengan neutron. Selain itu, radioisotop dapat juga diproduksi menggunakan akselerator melalui proses reaksi antara inti atom tertentu dengan suatu partikel, misalnya alpha, neutron, proton atau partikel lainnya. Secara sistematis proses produksi radioisotop di PTNBR dapat digambarkan pada skema berikut.
Di PTNBR untuk memproduksi radioisotop digunakan reaktor TRIGA Mark II dengan daya maksimum sebesar 2000 kW yang mempunyai kerapatan (fluks) neutron mencapai orde 1012n.cm-2.s-1 di daerah tempat iradiasi isotop. Penempatan target ke dalam reaktor serta pengambilannya dilakukan dengan cara mekanis menggunakan alat pancing. Fasilitas lain untuk menunjang produksi radioisotop adalah processing box yang terbuat dari timbal, beton atau bahan lain yang dapat menahan/mengurangi paparan radiasi dari radioisotop yang dibuat. Selain itu remote handling tong, digunakan untuk menggantikan fungsi tangan.
C. Penggunaan Radioisotop
Bidang Kedokteran
Radioisotop dapat digunakan untuk radioterapi, seperti larutan iodium-131 (Na131l) untuk terapi kelainan tiroid dan fosfor-32 (Na2H32PO4) yang merupakan radioisotop andalan dalam terapi polisitemia vera dan leukemia. Selain, itu radioisotop juga dapat digunakan untuk radiodiagnosis seperti teknesium-99m (Na99mTcO4) untuk diagnosis fungsi dan anatomis organ tubuh, sedangkan studi sirkulasi dan kehilangan darah dapat dilakukan dengan radioisotope krom-51 (Na2 51CrO4).
Bidang Pertanian
Radioisotop yang digunakan sebagai perunut dalam penelitian efisiensi pemupukan tanaman adalah fosfor-32 (32P). Teknik perunut dengan radioisotop akan memberikan cara pemupukan yang tepat dan hemat.
Bidang hidrologi
Natrium-24 (24P) merupakan radioisotop yang sering digunakan untuk mengukur kecepatan laju dan debit air sungai, air dalam tanah dan rembesan. Kebocoran dam serta pipa penyalur yang terbenam dalam tanah dapat dideteksi menggunakan radioisotop iodium-131 dalam bentuk senyawa CH3 131l, sedangkan lokasi dumping, asal/pola aliran sedimen dan laju pengendapan dapat diukur menggunakan krom-51 dan brom-82 masing-masing dalam bentuk senyawa K251Cr2P7 dan K82Br.
Bidang Industri
Teknik radiografi merupakan teknik yang sering dipakai terutama pada tahap-tahap konstruksi. Pada sektor industri minyak bumi, teknik ini digunakan dalam pengujian kualitas las pada waktu pemasangan pipa minyak/gas serta instalasi kilang minyak. Selain bagianbagian konstruksi besi yang dianggap kritis, teknik ini digunakan juga pada uji kualitas las dari ketel uap tekanan tinggi serta uji terhadap kekerasan dan keretakan pada konstruksi beton. Radioisotop yang sering digunakan adalah kobal-60 (60Co). Dalam bidang industri, radioisotope digunakan juga sebagai perunut misalnya untuk menguji kebocoran cairan/gas dalam pipa serta membersihkan pipa, yang dapat dilakukan dengan menggunakan radioisotop iodoum- 131 dalam bentuk senyawa CH3 131l.
Radioisotop seng-65 (65Zn) dan fosfor-32 merupakan perunut yang sering digunakan dalam penentuan efisiensi proses industri, yang meliputi pengujian homogenitas pencampuran serta residence time distribution (RTD). Sedangkan untuk kalibrasi alat misalnya flow meter, menentukan volume bejana tak beraturan serta pengukuran tebal material, rapat jenis dan penangkal petir dapat digunakan radioisotop kobal-60, amerisium-241 (241Am) dan cesium-137 (137Cs).
Radioisotop Produksi (PTNBR) Badan Tenaga Nuklir Nasional Pusat Teknologi Nuklir bahan dan Radiometri.
BAB III
APLIKASI NUKLIR DAN RADIOISOTOP DALAM KEDOKTERAN

A. Kedokteran Nuklir
Ilmu Kedokteran Nuklir adalah cabang ilmu kedokteran yang menggunakan sumber radiasi terbuka berasal dari disintegrasi inti radionuklida buatan, untuk mempelajari perubahan fisiologi, anatomi dan biokimia, sehingga dapat digunakan untuk tujuan diagnostik, terapi dan penelitian kedokteran.
Bidang kedokteran dapat dibedakan menjadi 2 macam :
Ë Radiologi, yaitu aplikasi teknologi nuklir dalam bidang kedokteran yang memanfaatkan sumber radiasi tertutup (sealed source) ataupun sumber radiasi yang dibangkitkan dengan bantuan peralatan, misalnya penggunaan jarum berupa sumber radiasi Co60, Ra226, sinar-X dan linear accelerator (linac).
Ë Kedokteran nuklir, yaitu aplikasi teknologi nuklir dalam bidang kedokteran yang memanfaatkan sumber radiasi terbuka (unsealed source), misalnya penggunaan sumber radioaktif I131, P32, Tc99m, dan lain sebagainya.
TABEL 1 : Perbandingan Pencitraan pada Kedokteran Nuklir dengan Pencitraan pada Radiologi
N0.
PEMBEDA
KEDOKTERAN NUKLIR
RADIOLOGI
1.
Sumber Radiasi
Zat radioaktif yang terbuka
Pesawat pembangkit radiasi
2.
Pembentukan Citra
Emisi radiasi, perbedaan
akumulasi radioisotop dalam
berbagai bagian tubuh
Transmisi radiasi; perbedaan daya tembus radiasi terhadap berbagai bagian tubuh
3.
Informasi yang diberikan
Terutama fungsional
Terutama anatomis -morfologis
Sejarah Kedokteran Nuklir dimulai sejak tahun 1901 oleh Henry Danlos. Pada waktu itu Henry Danlos menggunakan Radium (Ra226) untuk pengobatan tuberculosis pada kulit George C de Hevessy yang merintis pemakaian perunut zat radioaktif dalam bidang kedokteran. Pada saat itu yang digunakan sebagai perunut adalah radioisotop alam Pb212. Sedangkan bidang Radiologi ditemukan sejak tahun 1895 oleh C. Roentgen, seorang fisikawan Jerman. Pada tahun 1928 International Commission on Radiological Protection (ICRP) menetapkan dosis radiasi yang diizinkan.
Pada kedokteran Nuklir, radioisotop dapat dimasukkan ke dalam tubuh pasien (studi invivo) maupun hanya direaksikan saja dengan bahan biologis antara lain darah, cairan lambung, urine da sebagainya, yang diambil dari tubuh pasien yang lebih dikenal sebagai studi in-vitro (dalam gelas percobaan).
Pada studi in-vivo, setelah radioisotop dapat dimasukkan ke dalam tubuh pasien melalui mulut atau suntikan atau dihirup lewat hidung dan sebagainya maka informasi yang dapat diperoleh dari pasien dapat berupa:
1. Citra atau gambar dari organ atau bagian tubuh pasien yang dapat diperoleh dengan bantuan peralatan yang disebut kamera gamma ataupun kamera positron (teknik imaging)
2. Kurva-kurva kinetika radioisotop dalam organ atau bagian tubuh tertentu dan angka-angka yang menggambarkan akumulasi radioisotop dalam organ atau bagian tubuh tertentu disamping citra atau gambar yang diperoleh dengan kamera gamma atau kamera positron.
3. Radioaktivitas yang terdapat dalam contoh bahan biologis (darah, urine dsb) yang diambil dari tubuh pasien, dicacah dengan instrumen yang dirangkaikan pada detektor radiasi (teknik non-imaging).
Pada studi in-vitro, dari tubuh pasien diambil sejumlah tertentu bahan biologis misalnya 1 ml darah. Cuplikan bahan biologis tersebut kemudian direaksikan dengan suatu zat yang telah ditandai dengan radioisotop. Pemeriksaannya dilakukan dengan bantuan detektor radiasi gamma yang dirangkai dengan suatu sistem instrumentasi. Studi semacam ini biasanya dilakukan untuk mengetahui kandungan hormon-hormon tertentu dalam darah pasien seperti insulin, tiroksin dll.
Pemeriksaan kedokteran nuklir banyak membantu dalam menunjang diagnosis berbagai penyakitseperti penyakit jantung koroner, penyakit kelenjar gondok, gangguan fungsi ginjal, menentukan tahapan penyakit kanker dengan mendeteksi penyebarannya pada tulang, mendeteksi pendarahan pada saluran pencernaan makanan dan menentukan lokasinya, serta masih banyak lagi yang dapat diperoleh dari diagnosis dengan penerapan teknologi nuklir yang pada saat ini berkembang pesat.
Disamping membantu penetapan diagnosis, kedokteran nuklir juga berperanan dalam terapi-terapi penyakit tertentu, misalnya kanker kelenjar gondok, hiperfungsi kelenjar gondok yang membandel terhadap pemberian obat-obatan non radiasi, keganasan sel darah merah, inflamasi (peradangan)sendi yang sulit dikendalikan dengan menggunakan terapi obat-obatan biasa. Bila untuk keperluan diagnosis, radioisotop diberikan dalam dosis yang sangat kecil, maka dalam terapi radioisotop sengaja diberikan dalam dosis yang besar terutama dalam pengobatan terhadap jaringan kanker dengan tujuan untuk melenyapkan sel-sel yang menyusun jaringan kanker itu.
Di Indonesia, kedokteran nuklir diperkenalkan pada akhir tahun 1960-an, yaitu setelah reaktor atom Indonesia yang pertama mulai dioperasikan di Bandung. Beberapa tenaga ahli Indonesia dibantu oleh tenaga ahli dari luar negeri merintis pendirian suatu unit kedokteran nuklir di Pusat Penelitian dan Pengembangan Teknik Nuklir di Bandung. Unit ini merupakan cikal bakal Unit Kedokteran Nuklir RSU Hasan Sadikin, Fakultas Kedokteran Universitas Padjadjaran. Menyusul kemudian unit-unit berikutnya di Jakarta (RSCM, RSPP, RS Gatot Subroto) dan di Surabaya (RS Sutomo). Pada tahun 1980-an didirikan unit-unit kedokteran nuklir berikutnya di RS sardjito (Yogyakarta) RS Kariadi (Semarang), RS Jantung harapan Kita (Jakarta) dan RS Fatmawati (Jakarta). Dewasa ini di Indonesia terdapat 15 rumah sakit yang melakukan pelayanan kedokteran nuklir dengan menggunakan kamera gamma, di samping masih terdapat 2 buah rumah sakit lagi yang hanya mengoperasikan alat penatah ginjal yang lebih dikenal dengan nama Renograf.
B. Pemanfaatan Teknik Nuklir Di Luar Kedokteran Nuklir
Di luar kedokteran nuklir, teknik nuklir masih banyak memberikan sumbangan yang besar bagi kedokteran serta kesehatan, misalnya:
1. TEKNIK PENGAKTIVAN NEUTRON
Teknik nuklir ini dapat digunakan untuk menentukan kandungan mineral tubuh terutama untuk unsur-unsur yang terdapat dalam tubuh dengan jumlah yang sangat kecil (Co,Cr,F,Fe,Mn,Se,Si,V,Zn dsb) sehingga sulit ditentukan dengan metoda konvensional. Kelebihan teknik ini terletak pada sifatnya yang tidak merusak dan kepekaannya sangat tinggi. Di sini contoh bahan biologik yang akan idperiksa ditembaki dengan neutron.
2. PENENTUAN KERAPATAN TULANG DENGAN BONE DENSITOMETER
Pengukuran kerapatan tulang dilakukan dengan cara menyinari tulang dengan radiasi gamma atau sinar-x. Berdasarkan banyaknya radiasi gamma atau sinar-x yang diserap oleh tulang yang diperiksa maka dapat ditentukan konsentrasi mineral kalsium dalam tulang. Perhitungan dilakukan oleh komputer yang dipasang pada alat bone densitometer tersebut. Teknik ini bermanfaat untuk membantu mendiagnosis osteoporosis yang sering menyerang wanita pada usia menopause (matihaid) sehingga menyebabkan tulang muda patah.
3. THREE DIMENSIONAL CONFORMAL RADIOTHERAPHY (3D-CRT)Terapi Radiasi dengan menggunakan sumber radiasi tertutup atau pesawat pembangkit radiasi telah lama dikenal untuk pengobatan penyakit kanker. Perkembangan teknik elektronika maju dan peralatan komputer canggih dalam dua dekade ini telah membawa perkembangan pesat dalam teknologi radioterapi. Dengan menggunakan pesawat pemercepat partikel generasi terakhir telah dimungkinkan untuk melakukan radioterapi kanker dengan sangat presisi dan tingkat keselamatan yang tinggi melalui kemampuannya yang sangat selektif untuk membatasi bentuk jaringan tumor yang akan dikenai radiasi, memformulasikan serta memberikan paparan radiasi dengan dosis yang tepat pada target.
Dengan memanfaatkan teknologi 3D-CRT ini sejak tahun 1985 telah berkembang metoda pembedahan dengan menggunakan radiasi pengion sebagai pisau bedahnya (gamma knife). Dengan teknik ini kasus-kasus tumor ganas yang sulit dijangkau dengan pisau bedah konvensional menjadi dapat diatasi dengan baik oleh pisau gamma ini, bahkan tanpa perlu membuka kulit pasien dan yang terpenting tanpa merusak jaringan di luar target.
4. STERILISASI ALAT KEDOKTERAN
Alat/bahan yang digunakan di bidang kedokteran pada umumnya harus steril. Banyak di antaranya yang tidak tahan terhadap panas, sehingga tidak bisa disterilkan dengan uap air panas atau dipanaskan. Demikian pula sterilisasi dengan gas etilen oksida atau bahan kimia lain dapat menimbulkan residu yang membahayakan kesehatan. Satu-satunya jalan adalah sterilisasi dengan radiasi, dengan sinar gamma dan Co-60 yang dapat memberikan hasil yang memuaskan. Sterilisasi dengan cara tersebut sangat efektif, bersih dan praktis, serta biayanya sangat murah. Untuk transpiantasi jaringan biologi seperti tulang dan urat, serta amnion chorion untuk luka bakar, juga disterilkan dengan radiasi.
5. RADIOISOTOP UNTUK BRAKITERAPI DAN TELETERAPIHenry Bacquerel penemu radioaktivitas telah membuka cakrawala nuklir untuk kesehatan. Kalau Wilhelm Rontgen, menemukan sinar-x ketika gambar jari dan cincin istrinya ada pada film. Maka Marie Currie mendapatkan hadiah Nobel atas penemuannya Radium dan Polonium dan dengan itu pulalah sampai dengan 1960-an Radium telah digunakan untuk kesehatan hampir mencapai 1000 Ci. Tentunya ini sebuah jumlah yang cukup besar untuk kondisi saat itu. Masyarakat kedokteran menggunakan radioisotop Radium ini untuk pengobatan kanker, dan dikenal dengan Brakiterapi. Meskipun kemudian banyak ditemukan radiosiotop yang lebih menjanjikan untuk brakiterapi, sehingga Radium sudah tidak direkomendasikan lagi.
Selain untuk Brakiterapi, radisotop Cs-137 dan Co-60 juga dimanfaatkan untuk Teleterapi, meskipun belakangan ini teleterapi dengan menggunakan radioisotop Cs-137 sudah tidak direkomendasikan lagi untuk digunakan. Meskipun pada dekade belakangan ini jumlah pesawat teleterapi Co-60 mulai menurun digantikan dengan akselerator medik . Radioisotop tersebut selain digunakan untuk brakiterapi dan teleterapi, saat ini juga telah banyak digunakan untuk keperluan Gamma Knife, sebagai suatu cara lain pengobatan kanker yang berlokasi di kepala.
Teleterapi adalah perlakuan radiasi dengan sumber radiasi tidak secara langsung berhubungan dengan tumor. Sumber radiasi pemancar gamma seperti Co-60 pemakaiannya cukup luas, karena tidak memerlukan pengamatan yang rumit dan hampir merupakan pemancar gamma yang ideal. Sumber ini banyak digunakan dalam pengobatan kanker/tumor, dengan jalan penyinaran tumor secara langsung dengan dosis yang dapat mematikan sel tumor, yang disebut dosis letal. Kerusakan terjadi karena proses eksitasi dan ionisasi atom atau molekul. Pada teleterapi, penetapan dosis radiasi sangat penting, dapat berarti antara hidup dan mati. Masalah dosimetri ini ditangani secara sangat ketat di bawah pengawasan Badan Internasional WHO dan IAEA bekerjasama dengan laboratorium-laboratorium standar nasional.
6. PENGOBATAN LEUKIMIAPenemuan Rutherford memberikan jalan pada munculnya teknologi pemercepat radioisotop, sehingga J Lawrence dapat menggunakan Siklotron Berkeley dapat memproduksi P-32, yang merupakan radioisotop artifisial pertama yang digunakan untuk pengobatan leukimia. Sekitar 1939, I-128 diproduksi pertama kalinya dengan menggunakan Siklotron, namun dengan keterbatasan pendeknya waktu paro, maka I-131 dengan waktu paro 8 hari diproduksi. Perkembangan teknologi Siklotron untuk kesehatan menjadi penting setelah beberapa produksi radioisotop dengan waktu paro pendek mulai dimanfaatkan dan sebagai dasar utama PET (Positron Emission Tomography).
C. llmu Kedokteran Nukir Molekuler
Perkembangan disiplin ilmu baru yaitu ilmu kedokteran molekuler (moleculer medicine). Beranjak dari konsep ilmu kedokteran molekuler, maka diagnosis, terapi, dan pemantauan penyakit menjadi berdasarkan molekuler. Akan terjadi perobahan cara pandang penyakit dari organ (organ oriented) menjadi molekuler (moleculer oriented)
Dengan keunikannya, ilmu kedokteran nuklir akan banyak bersinggungan dengan ilmu kedokteran molekuler. Bidang garapan kedokteran nuklir dimasa akan lebih tertuju pada studi in-vivo tentang metabolisme, imunologi, serta reseptor seperti reseptor endokrin, tumor, dan neorotransmiter. Radiofarmaka molekuler akan banyak digunakan, yang sebagian berasal dari radionuklida waktu paroh pendek produksi siklotron.
Perkembangan tersebut melahirkan paradigma baru yaitu Kedokteran Nuklir Molekuler yang merupakan penegasan dari hakikat ilmu kedokteran dalam perspektif perkembangan ilmu dan teknologi kedokteran. Dari sudut pandang kedokteran nuklir molekuler, masalah pasien akan dilihat sebagai disfungsi molekuler bukan kelainan struktural.
BAB IV
SIMPULAN DAN SARAN

A. SimpulanAplikasi teknik nuklir, baik aplikasi radiasi maupun radioisotop, sangat dirasakan manfaatnya sejak program penggunaan tenaga atom untuk maksud damai dilancarkan pada tahun 1953. Dewasa ini penggunaannya di bidang kedokteran sangat luas, sejalan dengan pesatnya perkembangan bioteknologi, serta didukung pula oleh perkembangan instrumentasi nuklir dan produksi radioisotop umur pendek yang lebih menguntungkan ditinjau dari segi medik. Energi radiasi yang dipancarkan oleh suatu sumber radiasi, dapat menyebabkan peruba.hari fisis, kimia dan biologi pada materi yang dilaluinya. Perubahan yang terjadi dapat dikendalikan dengan jalan memilih jenis radiasi (α, β, γ atau neutron) serta mengatur dosis terserap, sesuai dengan efek yang ingin dicapai. Berdasarkan sifat tersebut, radiasi dapat digunakan untuk penyinaran langsung seperti antara lain pada radioterapi, dan sterilisasi. Selain itu, radiasi yang dipancarkan oleh suatu radioisotop, lokasi dan distribusinya dapat dideteksi dari luar tubuh secara tepat, serta aktivitasnya dapat diukur secara akurat; sehingga penggunaan radioisotop sebagai tracer atau perunut, sangat bermanfaat dalam studi metabolisme, serta teknik pelacakan dan penatahan berbagai organ tubuh, tanpa harus melakukan pembedahan.
Dapat dikemukakan bahwa teknik nuklir sangat berperan dalam penanggulangan berbagai masalah kesehatan manusia. Banyak masalah yang sebelumnya dengan metode konvensional tidak terpecahkan, dengan teknik nuklirdapatterpecahkan. Yang terpenting adalah kemajuan-kemajuan baik di bidang diagnosis maupun terapi haruslah ditujukan untuk keselamatan, kemudahan, kesembuhan dan kenyamanan pasien. Dengan kemajuan iptek di bidang instrumentasi nuklir, bioteknologi dan produksi isotop umur pendek yang menguntungkan ditinjau dan segi medik dan pendeteksian/pengukuran; diharapkan bahwa harapan hidup yang lebih nyaman dan panjang bagi mereka yang terkena penyakit dapat tercapai.
B. SaranBagi sebagian orang, teknologi nuklir dan Radioisotop dapat memunculkan perasaan ngeri dan takut. Hal ini dapat difahami karena memang teknologi ini muncul ke pentas peradaban dalam sosok yang mengerikan di Hiroshima dan Nagasaki. Padahal sebenarnya teknologi nuklir telah memberikan kontribusi besar dalam kehidupan baik secara langsung maupun tidak langsung di bidang kesehatan, energi, industri, pertanian, pertambangan dan sebagainya. Untuk itu marilah kita perdalam ilmu kita tentang pemanfaatan nuklir dan radioisotope dalam bidang kedokteran khususnya, karena hal ini akan memberikan manfaat besar bagi keberlangsungan hidup manusia dan sekitarnya.

3 komentar: